Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL
If the prefix mega is added to the unit of the quantity being described, the magnitude of quantity increases by 10^{6} times i.e. 1 million times.
For Example- 1 MW = 1000000 watts
<span>Okay then I would go with choice B since fusion takes place in the sun which is a giant star.</span>
Answer:
ΔG° = -5.4 kJ/mol
ΔG = 873.2 J/mol = 0.873 kJ /mol
Explanation:
Step 1: Data given
ΔG (NO2) = 51.84 kJ/mol
ΔG (N2O4) = 98.28 kJ/mol
Step 2:
ΔG = ΔG° + RT ln Q
⇒with Q = the reaction quatient
⇒with T = the temperature = 298 K
⇒with R = 8.314 J / mol*K
⇒with ΔG° = ΔG° (N2O4) - 2*ΔG°(NO2
)
⇒ ΔG° = 98.28 kJ/mol - 2* 51.84 kJ/mol
⇒ ΔG° = -5.4 kJ/mol
Part B
ΔG = ΔG° =RT ln Q
⇒with G° = -5.4 kj/mol = -5400 j/mol
⇒
with R = 8.314 J/K*mol
⇒with T = 298 K
⇒with Q = p(N2O4)/ [ p(NO2) ]² = 1.63/0.36² = 12.577
ΔG = -5400 + 8.314 * 298 * ln(12.577)
ΔG = -5400 + 8.314 * 298 * 2.532
ΔG = 873.2 J/mol = 0.873 kJ/mol