Answer:
E = 1580594.95 N/C
Explanation:
To find the electric field inside the the non-conducting shell for r=11.2cm you use the Gauss' law:
(1)
dS: differential of the Gaussian surface
Qin: charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85 × 10-12 C2/N ∙ m2
The electric field is parallel to the dS vector. In this case you have the surface of a sphere, thus you have:
(2)
Qin is calculate by using the charge density:
(3)
Vin is the volume of the spherical shell enclosed by the surface. a is the inner radius.
The charge density is given by:

Next, you use the results of (3), (2) and (1):

Finally, you replace the values of all parameters, and for r = 11.2cm = 0.112m you obtain:

hence, the electric field is 1580594.95 N/C
Answer:
Tension=
(g=acceleration of gravity)
Explanation:
Given that,
A 5Kg and 10Kg are attached by a cable suspended over a pulley.
As 10Kg > 5Kg , the 10 kg mass accelerates down and the 5kg mass accelerates up, let it be a. Let the tension in the cable be T.
So, the equations of motion are

Now adding them we get,


Substituting them back in the equation we get,


Answer:
Explanation:
a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.
b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or 
c. The period, or T, of a wave is found in the equation
were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:
so
and
T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)
d. The speed of the wave is found in the equation
and since we already have the frequency and we solved for the wavelength already, filling in:
and
v = 50.0(20.0) so
v = 1.00 × 10³ m/s
And there you go!
This would be the definition of a resistor. These components inhibit or “resist” the flow of a current.
Hope this helps!
Water holds in heat very well. Keep the temperature more steady and average. The areas around the water will also have a less variant change in temperature as a result. This property of water is known as high specific heat.