Answer:
1. Can change the state of an object(rest to motion/ motion to rest)
2. May change the speed of an object if it is already moving.
3. May change the direction of motion of an object.
Explanation: A force acting on an object causes the object to change its shape or size, to start moving, to stop moving, to accelerate or decelerate.
Answer:
1.25 m
Explanation:
From the question given above, the following data were obtained:
Force ratio = 2.5
Distance of load from the fulcrum = 0.5 m
Distance of effort =.?
The distance of the effort from the fulcrum can be obtained as illustrated below:
Force ratio = Distance of effort / Distance of load
2.5 = Distance of effort / 0.5
Cross multiply
Distance of effort = 2.5 × 0.5
Distance of effort = 1.25 m
Therefore, the distance of the effort from the fulcrum is 1.25 m
Answer: vl = 2.75 m/s vt = 1.5 m/s
Explanation:
If we assume that no external forces act during the collision, total momentum must be conserved.
If both cars are identical and also the drivers have the same mass, we can write the following:
m (vi1 + vi2) = m (vf1 + vf2) (1)
The sum of the initial speeds must be equal to the sum of the final ones.
If we are told that kinetic energy must be conserved also, simplifying, we can write:
vi1² + vi2² = vf1² + vf2² (2)
The only condition that satisfies (1) and (2) simultaneously is the one in which both masses exchange speeds, so we can write:
vf1 = vi2 and vf2 = vi1
If we call v1 to the speed of the leading car, and v2 to the trailing one, we can finally put the following:
vf1 = 2.75 m/s vf2 = 1.5 m/s
Your potential energy and mass don't tell what your weight is.
If I walk up from the first floor to the second floor, my weight hasn't
changed even though my potential energy has increased.