Answer:
Explanation:
2 HCl(g) + Mg(s) → MgCl₂(s) + H₂(g)
Let's calculate the quantity of mole of produced hydrogen with the Ideal Gases Law
P . V = n . R .T
2.19 atm . 6.82L = n . 0.082 . 308K
(2.19 atm . 6.82L) / (0.082 . 308K) = n
0.591 mol = n
1 mol of H₂ gas came from 2 mol of hydrochloric, so, 0.591 mol came from the double of mole
0.591 .2 = 1.182 mole of acid.
Molar mass of HCl = 36.45 g/m
1.182 mole are (36.45 g/m . 1.182g ) contained in 43.1 g
Density HCl = HCl mass / HCl volume
0,118 g/mL = 43.1 g / HCl volume
43.1 g / 0.118 g/mL = 365.3 mL (HCl volume)
The molecules are frozen in place but still vibrate
Answer:
they are transfer from the towers
Explanation:
Answer:
True
Explanation:
The gaseous state is characterized in that the cohesion forces are usually null, in which the particles have their maximum mobility. The particles tend to occupy all the available volume, so their shape and volume are variable. The gaseous state is a dispersed state of matter, which means that the molecules are separated by distances much larger than the diameter of the gas molecules.