Answer:
See explanation below
Explanation:
To get a better understanding watch the picture attached.
In the case of the reaction with Bromine, the -N(CH₃)₂ is a strong ring activator, therefore, it promotes a electrophilic aromatic sustitution, so, in the mechanism of reaction, the lone pair of the Nitrogen, will move to the ring by resonance and activate the ortho and para positions. That's why the bromine wil go to the ortho and para positions, mostly the para position, because the -N(CH₃)₂ cause a steric hindrance in the ortho position.
In the case of the reaction with HNO₃/H₂SO₄, the acid transform the -N(CH₃)₂ in a protonated form, the anilinium ion, which is a deactivating of the ring, and also a strong electron withdrawing, so, the electrophile will go to the meta position instead.
Hope this helps.
Answer:
5.52 g
Explanation:
First we <u>convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 6.30 g NH₃ ÷ 17 g/mol = 0.370 mol NH₃
- 1.80 g O₂ ÷ 32 g/mol = 0.056 mol O₂
Now we <u>calculate with how many NH₃ moles would 0.056 O₂ moles react</u>, using the<em> stoichiometric coefficients</em>:
- 0.056 mol O₂ *
= 0.045 mol NH₃
As there more NH₃ moles than required, NH₃ is the excess reactant.
Then we calculate how many NH₃ moles remained without reacting:
- 0.370 mol NH₃ - 0.045 mol NH₃ = 0.325 mol NH₃
Finally we convert NH₃ moles into grams:
- 0.325 mol NH₃ * 17 g/mol = 5.52 g
Answer:C10H10
Explanation:
Use a balanced equation to determined quantity of carbon and hydrogen. Then use simple division to determine the empirical formula before the molecula formula
True
Carbon monoxide is a primary pollutant which no odor results from incomplete combustion of fuel. The man sources are gasoline and burning of biomass.
Depending on the source of emission, pollutants can be classified into two groups that is primary and secondary pollutants.
A primary pollutant is emitted in the atmosphere directly from a source. It can be either natural sch as volcanic eruptions, sandstorms or man-made that is due to industrial and vehicle emissions. Examples of primary pollutants are nitrogen oxides, carbon monoxide and particulate matter.
Secondary pollutant is due to interactions between primary and secondary pollutants. These can be chemical or physical interactions. Examples are photo-chemical oxidants and secondary particulate matter.
Therefore, carbon monoxide CO is a primary pollutant.
Answer:
Explanation:
When air masses will move over cold location then bottom layer of air cools and become more dense. Due to its high density it is trapped near the ground then it flow towards the equator.
When it moves over hot location then bottom layer gets hot and lighter. Then it moves towards poles.
It changes the temperature and humidity of the climate. making hoter region coll and cooler region a bit hot.