Answer:
The correct answer to the question is (A)
When it hits the heavy rope, compared to the wave on the string, the wave that propagates along the rope has the same (A) frequency
Explanation:
The speed of a wave in a string is dependent on the square root of the tension ad inversely proportional to the square root of the linear density of the string. Generally, the speed of a wave through a spring is dependent on the elastic and inertia properties of the string

Therefore if the linear density of the heavy rope is four times that of light rope the velocity is halved and since
v = f×λ therefore v/2 = f×λ/2
Therefore the wavelength is halved, however the frequency remains the same as continuity requires the frequency of the incident pulse vibration to be transmitted to the denser medium for the wave to continue as the wave is due to vibrating particles from a source for example
Answer:
Option (C)
Explanation:
Einsteinium is an element of the periodic table grouped in the Actinide series, with atomic number 99. They are dense element and highly electro-positive. <u>They are highly radioactive</u>, i.e the atoms within the element are unstable and constantly decay until they reach a stable environment. It has 99 number of electrons and protons, 153 number of neutrons.
Due to its high radioactivity, they are health hazardous and can used in making nuclear weapons but their uses are very limited and unknown.
Thus, the correct answer is option (C).
Answer:
The bottom/center of the pendulum
Explanation:
As it swings, the pendulum will have maximum potential energy at the top of its arc.
As it comes back towards the center that potential energy will convert into kinetic energy until it reaches the middle of its swing (when the pendulum is fully vertical) where all potential energy has been converted into kinetic energy.
This is when the kinetic energy is the highest
As it begins to move away from the center of its arc, that kinetic energy will convert into potential energy again, and the process repeats
I think true. I'm pretty sure, but check w/ others too.
Answer:
what is the question I cannot click the
Explanation: