The amount of heat given by the water to the block of ice can be calculated by using
where
is the mass of the water
is the specific heat capacity of water
is the variation of temperature of the water.
Using these numbers, we find
This is the amount of heat released by the water, but this is exactly equal to the amount of heat absorbed by the ice, used to melt it into water according to the formula:
where
is the mass of the ice while
is the specific latent heat of fusion of the ice.
Re-arranging this formula and using the heat Q that we found previously, we can calculate the mass of the ice:
A sound wave<span> in a steel rail </span>has<span> a </span>frequency of<span> 620 </span>Hz<span> and a </span>wavelength<span> of 10.5 ... Find the </span>speed<span> of </span>a wave<span> with a </span>wavelength of 5<span> m and a </span>frequency of<span> 68 </span>Hz<span>.</span>
Answer: Electrons are the smallest of the three particles that make up atoms. Electrons are found in shells or orbitals that surround the nucleus of an atom
Explanation: hope this helps
Answer:
-30° C
Explanation:
Data provided in the problem:
The formula for conversion as:
F = (9/5)C + 32
Now,
for the values of F = -22 , C = ?
Substituting the value of F in the above formula, we get
-22 = (9/5)C + 32
or
-22 - 32 = (9/5)C
or
(9/5)C = - 54
or
C = - 54 × (5/9)
or
C = - 30 °
Hence, -22 Fahrenheit equals to -30°C