The AMOUNT of energy the ball has doesn't change. It's 294 joules in Darwin's hand, and it's still 294 joules when the ball hits the ground. It's all PE before he let's it go, and it steadily changes from PE to KE all the way down.
It BEGINS to turn into KE immediately, when Darwin lets go of the ball, and it starts to fall.
More and more PE turns into KE as the ball falls, all the way down.
When the ball hits the ground, it has no more PE left. All of its mechanical energy is then KE.
Answer:
Part a)

Part B)

Explanation:
As we know that when both the forces are acting on the object in same direction then we will have

as we know that

m = 10.6 kg
now we will have


Now two forces are in opposite direction then we have


Part A)
Now we will have from above two equation

Part B)
Similarly for other force we have

Answer:
the more particles packed together the faster it falls
Explanation:
the mass + the 1 constant g-force = the speed without adding air resistance
<h2>
Answer: 540 J</h2>
Explanation:
The Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(1)
In this case both (the force and the distance in the path) are parallel (this means they are in the same direction), so the work
performed is the product of the force exerted to push the box
by the distance traveled
.
Hence:
(2)