Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring ?
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m
_______________________________
I Hope this helps, greetings ... Dexteright02! =)
The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:

The new force would be 1.6 N.
Since the charges multiply as variables (q1)x(q2), then it would simply be double (q1)x(q2), or 1.6.
Answer:
1. 100 CE
Menelaus of Alexandria lived. a Greek mathematician and astronomer
2. 190 BCE - 120 BCE
Hipparchus of Nicea, an Hellenic language mathematician, astronomer and geographer, regarded by many historians as a scientist of the most effective quality and one amongst the most effective astronomical genius amongst ancient Greeks.
3. 276 BCE - 195 BCE
Eratosthenes, an Hellenic language Alexandrian scholar, who was a native of Cyrene and one amongst the most effective geographers in antiquity.
4. c. 310 BCE - c. 230 BCE
Aristarchus of Samos. A Greek astronomer and mathematician
5. 384 BCE - 322 BCE
Aristotle Era.
6. c. 571 BCE - c. 497 BCE
Pythagoras of Samos lived during this era.
7. 585 BCE
Media and Lydia went into battle and broke off immediately as a result an entire eclipse of the sun which occurred causing the two armies to create peace. The eclipse was already predicted by Thales of Miletus.
8. 585 BCE
Thales of Miletus lived during now.
Explanation:
Ancient Greeks were some of the first people known to study the sky and understand what astronomy really entails. They discovered the Earth was spherical in shape and went ahead to devise a means to measure its size. They also were the ones who created the idea of a geocentric solar system, which was incorrect, But assisted us in understanding the universe for over hundreds of years.
Answer:
a. negative
b. zero
Explanation:
work is the change in the energy of a system due to external forces
work is done when a force moves a load through a distance in the direction of the force
The work done by a force on a system is positive when the force and the force displacement point in the same direction and negative when they point in opposite directions
in the scenario we are considering in the question, the force (the hand) moves the block vertically upwards but the displacement of the block reduces (in the opposite direction) since it decelerates. as such the work done by gravity on the block is negative.
the work done on the block is zero if the system consists of the block and the earth because there is no gravitational force exerted on the system