<span>It changes from a liquid into a solid which means it is changing states. It also is changing temperature due to the condenser increasing or decreasing the temperature in order for the vapor to be transformed in liquid.</span>
Answer:
Explanation:
f = ![\sqrt{T/(m/L)} / 2L](https://tex.z-dn.net/?f=%5Csqrt%7BT%2F%28m%2FL%29%7D%20%2F%202L)
T = 120 N
L = 3.00 m
(m/L) = 120 g/cm(100 cm/m / 1000 g/kg) = 12 kg/m
(wow that's massive for a "rope")
f =
)
f =
/6 = 0.527 Hz
This is a completely silly exercise unless this "rope" is in space somewhere as the weight of the rope (353 N on earth) far exceeds the tension applied.
A much more reasonable linear density would be 120 g/m resulting in a frequency of √1000/6 = 5.27 Hz on a rope that weighs only 3.5 N
Runoff because the mud is a liquid and moves on an amount of water that is in it like with quicksand
Thank you for posting your question here at brainly. Below is the solution. I hope the answer will help.
<span>Cl^- 1s^2 2s^2p^6 3s^2 3p^6 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 17- 10 =7 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6; 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 19- 10 = 9
</span>
S = 2 + 6.8 + 2.45 = 11.25
<span>Zeff(Cl^-) = 17 – 11.25 = 5.75 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6 same S as for Cl^- but Z increases by 2 hence </span>
<span>Zeff(K^+) = 19 - 11.25 = 7.75</span>