We will use this two reaction equation:
H2SO3 + H2O ↔ H3O+ + HSO3- Ka1 = 1.3 x 10^-2
HSO3- + H2O ↔ H3O+ + SO3 2- Ka2= 6.3 x 10^-8
we will use the ICE table for the first equation:
H2SO3 + H2O ↔ H3O+ + HSO3-
initial 0.025 0 0
change -X +X +X
Equ (0.025-X) X X
Ka1 = [H3O+] [HSO3-] / [H2SO3]
1.3 x 10^-2 = X^2 / (0.025 - X) by solving for X
∴ X = 0.0127
when [H3O+] = X
∴[H3O+] = 0.0127 M
and when [HSO3-] = X
∴[HSO3-] = 0.0127 M
and when [H2SO3] = 0.025 - X
∴[H2SO3] = 0.025 - 0.0127
= 0.0123 M
when Kw = [OH-][H3O+]
and Kw = 1.1 x 10^-14 / 0.0127
∴[OH-] = 1.1 x 10^-14 / 0.0127
= 8.66 x 10^-13 M
- by using the ICE table for the second equation:
HSO3- + H2O ↔ H3O+ + SO3 2-
initial 0.0127 0.0127 0
change -X +X +X
Equ (0.0127-X) (0.0127+X) X
when Ka2 = [SO32-] [H3O+] / [HSO3-]
by substitution:
6.3 x 10^-8 = X(0.0127+X) / (0.0127-X)
as the Ka2 is so small so we can assume that (0.01271 + X) & (0.01271-X) = 0.01271 and neglect X
6.3 x 10^-8 = 0.0127X /0.0127
∴X = 6.3 x 10^-8
when [SO3 2-] = X
∴[SO32-] = 6.3 x 10^-8
Volume of water displaced is equal to the volume of the metal. So 41 - 20 = 21 ml. Density = mass / volume so density = 159 / 21 = 7.57 g/ml
Sorry, Cant really tell how to differentiate the students and trial times
For the answer to the question above, well presumably because the exact concentration of the composition KMnO4 solution doesn't matter. <span>If the concentration of the KMnO4 solution is important (usually in titrations etc.) then it is not allowed to use a wet bottle. The water in the bottle will dilute the KMnO4 solution and change the concentration of the said compound.</span>