The volume of the balloon is approximately 2652 liters.
<h3>How to determine the volume occupied by the gas in a balloon </h3>
Let suppose that <em>flammable</em> hydrogen behaves ideally. GIven the molar mass (
), in kilograms per kilomole, and mass of the gas (
), in kilograms. The volume occupied by the gas (
), in cubic centimeters, is found by the equation of state for <em>ideal</em> gases:
(1)
Where:
- Ideal gas constant, in kilopascal-cubic meters per kilomole-Kelvin.
- Temperature, in Kelvin
- Pressure, in kilopascals
If we know that
,
,
,
and
, then the volume of the balloon is:

(
)
The volume of the balloon is approximately 2652 liters.
To learn more on ideal gases, we kindly invite to check this verified question: brainly.com/question/8711877
Answer:

Explanation:
You can calculate the entropy change of a reaction by using the standard molar entropies of reactants and products.
The formula is

The equation for the reaction is
C₂H₄(g) + 3O₂(g) ⟶ 2CO₂(g) + 2H₂O(ℓ)
ΔS°/J·K⁻¹mol⁻¹ 219.5 205.0 213.6 69.9

Pressure can affect the boiling pressure of a substance
as when pressure increases the particles are closer together and so require more energy to boil therefore increasing the substances boiling point
hope that helps
Answer:
B. Charges ( a slight positive charge on one end, and a slight negative charge on the other).
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ