Answer:

Explanation:
The question: What is the net force exerted by these two charges on a third charge q_3 = 47.0 nC placed between q_1 and q_2 at x_3 = -1.240 mm ?
<u>Your answer may be positive or negative, depending on the direction of the force.</u>
Solution:
The coulomb force is given by the equation

where
is the separation between the charges
and
.
Now, in our case



The separation between charges
and
is

Therefore, the force between them is

and it is directed in the negative x-direction.
The separation between charges
and
is

therefore, the force between them is

Therefore the total force on charge
is

To solve this exercise it is necessary to apply the concepts related to Robert Boyle's law where:

Where,
P = Pressure
V = Volume
T = Temperature
n = amount of substance
R = Ideal gas constant
We start by calculating the volume of inhaled O_2 for it:


Our values are given as
P = 1atm
T=293K 
Using the equation to find n, we have:




Number of molecules would be found through Avogadro number, then


Newton's first law of motion says something like "An object remains
in constant, uniform motion until acted on by an external force".
Constant uniform motion means no change in speed or direction.
If an object changes from rest to motion, that's definitely a change
of speed. So it doesn't remain in the state of constant uniform
motion (none) that it had when it was at rest, and that tells us
that an external force must have acted on it.
Explanation:
Given that,
The disintegration constant of the nuclide, 
(a) The half life of this nuclide is given by :



(b) The decay equation of any radioactive nuclide is given by :


Number of remaining sample in 4.44 half lives is :


So, 

(c) Number of remaining sample in 14.6 days is :


So, 

Hence, this is the required solution.
A scientific law is absolute, it cannot be proven wrong. A scientific theory is like a belief, it has been proven but can also be argued or disproven.