<span>The magnetic field does not continually spread outward from the wire.</span>
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
Answer:
The magnitude of the electric force on a protein with this charge is 
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force

Where, F = force
E = electric field
q = charge
Put the value into the formula


Hence, The magnitude of the electric force on a protein with this charge is 
If we pull an object vertically upwards then we need to apply a force which is equal in the magnitude of the weight of the object

now when we pull the same object upwards along an inclined plane with angle then we require a force which will balance the component of weight along the inclined
so it is given as

so as if we compare the two forces we can say that since the value of sine is always less than 1 for an angle less than 90 degree
so in the 2nd case when we pull the object along the inclined plane it will require less effort
so correct answer is
<em>A. reduce effort</em>
Since in an electromagnetic wave the electric and magnetic fields are perpendicular to each other and perpendicular to the direction of motion, the electric field has to point in the z direction.