The answer is d.5 your welcome
Answer: KE = 25 J
Explanation: You must use the formula
KE = 1/2 m v²
to solve this problem.
KE = 1/2 (10 Kg) (5 m/s)
KE = 1/2 (50 kgm/s)
KE = 25 J
I believe the answer would be c because i think that you multiply the 2
The modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly (option B).
<h3>What is kinetic energy?</h3>
Kinetic energy is the energy possessed by an object because of its motion. The kinetic energy equal (nonrelativistically) to one half the mass of the body times the square of its speed.
According to this question, an engineer is designing a small toy car that will be launched from rest. The engineer wants to maximize the kinetic energy of the car when it is launched by a compressed spring.
However, he can only make one adjustment to the initial conditions of the car. Considering the fact that the mass of an object is directly proportional to the kinetic energy.
This suggests that the modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly.
Learn more about kinetic energy at: brainly.com/question/12669551
#SPJ1
1 nanowatt = 1 nanojoule/sec
1 watt = 1 joule/sec
10 watts = 10 joules/sec
100 watts = 100 joules/sec
742.914 watts = 742.914 joules/sec
1,000 watts = 1,000 joules/sec
10,000 watts = 10,000 joules/sec
100,000 watts = 100,000 joules/sec
1 megawatt = 1 megajoule/sec
1 gigawatt = 1 gigajoule/sec
1 petawatt = 1 petajoule/sec
We don't care what frequency the transmission is using,
or who their morning DJ is.