Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
Speed or power activities
ELECTROSTATIC:
relating to stationary electric charges or fields as opposed to electric currents.
NEUTRAL:
nor negative nor positive/having no charge
POSITIVELY CHARGED:
positive charge occurs when the number of protons exceeds the number of electrons
NEGATIVELY CHARGED:
negative charge occurs when the number of electrons exceeds the number of protons.
COULOMB:
SI unit for electric charge. One coulomb is equal to the amount of charge from a current of one ampere flowing for one second.
MICROCOULOMB:
a unit of electrical charge equal to one millionth of a coulomb.
NANOCOULOMB:
Nanocoulombs are a unit of charge 1,000,000,000 times smaller than Coulomb.
CONSERVATION OF CHARGE:
constancy of the total electric charge in the universe or in any specific chemical or nuclear reaction
QUANTISATION OF CHARGE:
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge.
Answer:
Work done against gravity in lifting an object becomes potential energy of the object-Earth system. The change in gravitational potential energy, ΔPEg, is ΔPEg = mgh, with h being the increase in height and g the acceleration due to gravity.
Explanation:
You're Welcome.