Hey ! a highland is a area of high or mountainous land. you got this babe<333
Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m
Just look at the number in front also called coefficient (you have to balance the equations first, but all the questions here are balanced, so no worries). for q1.
in the balanced equation, the number in front of aluminum oxide is 2 (2 - this number Al2O3) and for aluminium is 4 as in (4 Al). so the ratio is 2:4. simplified it is 1:2. or write it out fully
2 Al2O3: 4 Al
ignore everything after the number.
2:4
same as 1:2
Aluminium oxide to oxygen
2 Al2O3: 3 O2
2:3
aluminum to oxygen
4 Al: 3 O2
4:3
question 2
Mercury oxide to Mercury
2 HgO : 2 Hg
2:2
same as 1:1
Mercury oxide to oxygen
2 HgO : O2
since oxygen in this case does not have a number written in front of it, the default is 1.
2: 1.
you should be able to do the rest
Where is the rest of the question.
Answer:
Moles of BCl₃ needed = 0.089 mol
Explanation:
Given data:
Moles of BCl₃ needed = ?
Mass of HCl produced = 10.0 g
Solution:
Chemical equation:
BCl₃ + 3H₂O → 3HCl + B(OH)₃
Number of moles of HCl:
Number of moles = mass/molar mass
Number of moles = 10.0 g/ 36.46 g/mol
Number of moles = 0.27 mol
Now we will compare the moles of HCl with BCl₃.
HCl : BCl₃
3 : 1
0.27 : 1/3×0.27 = 0.089 mol