Answer:
ΔH = 180.6 kJ
Explanation:
Given that:
N2 (g) + 2O2(g) = 2NO2 (g) ΔH = 66.4 kJ
<u>2NO (g) + O2 (g) = 2NO2 (g) ΔH = -114.2 kJ </u>
N2 (g) + O2 (g) = 2NO (g) ΔH = ????
The subtraction of both equations would yield the unknown ΔH , therefore:
ΔH = 66.4 - ( - 114.2 kJ)
ΔH = 180.6 kJ
It's Synthesis, single replacement is incorrect.
Answer:
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g)
Explanation:
Which ONE of the following is an oxidation–reduction reaction?
A) PbCO₃(s) + 2 HNO₃(aq) ⇒ Pb(NO₃)₂(aq) + CO₂(g) + H₂O(l). NO. All the elements keep the same oxidation numbers.
B) Na₂O(s) + H₂O(l) ⇒ 2 NaOH(aq). NO. All the elements keep the same oxidation numbers.
C) SO₃(g) + H₂O(l) ⇒ H₂SO₄(aq). NO. All the elements keep the same oxidation numbers.
D) CO₂(g) + H₂O(l) ⇒ H₂CO₃(aq). NO. All the elements keep the same oxidation numbers.
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g). YES. <u>C is reduced</u> and <u>H is oxidized</u>.
Variables we know:
t = 8 seconds
Vi = 0 m/s
g = -9.81
Δy = ?
Vf = ?
Equation we will be using to solve for Vf: Vf = Vi + gt
Steps to solve:
Vf = (0) + (-9.81)(8)
Vf = -78.48 m/s
Hope this helps!! :)
Answer:

Explanation:
Hello,
In this case, by knowing that 1 inch equals 2.54 cm and 60 seconds equals 1 min, the resulting value results:

Best regards.