Where is the rest of the sentence?
Answer:t=0.3253 s
Explanation:
Given
speed of balloon is 
speed of camera 
Initial separation between camera and balloon is 
Suppose after t sec of throw camera reach balloon then,
distance travel by balloon is


and distance travel by camera to reach balloon is


Now






There are two times when camera reaches the same level as balloon and the smaller time is associated with with the first one .
(b)When passenger catches the camera time is 
velocity is given by



and position of camera is same as of balloon so
Position is 

Answer:
I guess the acceleration would be 8 meters a second
Explanation:
I can't think of any other fitting way to put the answer sorry if it's not right
Answer:
iv) It is 9x bigger than before
Explanation:
As the amplitudes of the new speakers add directly with the original one, taking into account the phase that they have, the composed amplitude of the sound wave is as follows:
At = A + 4A -2A = 3 A
The intensity of the wave, assuming it propagates evenly in all directions, is constant at a given distance from the source, and can be expressed as follows:
I = P/A
where P= Power of the wave source, A= Area (for a point source, is equal to the surface area of a sphere of radius r, where is r is the distance to the source along a straight line)
For a sinusoidal wave, the power is proportional to the square of the amplitude, so the intensity is proportional to the square of the amplitude also.
If the amplitude changes increasing three times, the change in intensity will be proportional to the square of the change in amplitude, i.e., it will be 9 times bigger.
So, the statement iv) is the right one.
Answer:0.0704 kg
Explanation:
Given
initial Absolute pressure
=210+101.325=311.325



as the volume remains constant therefore



therefore Gauge pressure is 337.44-101.325=236.117 KPa
Initial mass 

Final mass 

Therefore
=0.91-0.839=0.0704 kg of air needs to be removed to get initial pressure back