Answer:
13500 N
Explanation:
According to newtons second law of motion
mass m =1500 Kg
a = 9m/s^2
Force F = mass m × acceleration a
F = 1500×9= 13500 N
Answer:
A: 1,2-dimethylcyclopropane
Explanation:
The possible cyclic structure with formula C₅H₁₀ are shown in the image.
A is a cyclic compound. On monochlorination, A yields 3 products.
To have 3 products on monochlorination, there should be three different carbon atoms.
Considering structure 1, all carbons have same nature, thus only one product will be formed and thus not a structure of A.
Considering structure 2, there are two different carbon atoms, thus two different structure are formed and thus not a structure of A.
Considering structures 3 and 4 , there are four different carbon atoms, thus four products will be formed and either of them are not a structure of A.
Considering structure 5, there are three different carbon atoms, thus three different structure are formed and thus the A is structure 5.
The volume of chlorine gas measured at STP will be liberated by a current of 2.5 A flowing for a period of 1.8 hours through an aqueous solution of AgCl is 1.88 litre.
<h3>What is Faraday's law ?</h3>
According to Faraday's Law , During Electrolysis , The amount of substance liberated at the cathode or anode is directly proportional to the electricity that is passed through the cell.
The reaction taking place at anode is:
2Cl → Cl₂ +2e −
The total charge is calculated as
Q=I×t= 2.5×1.8×60×60 coulomb
Q = 16200 coulomb
The amount of chlorine liberated by passing 16200 coulomb of electric charge
= 16200/(2*96500)
= 0.084 mole
Volume of Cl₂ at STP is
1 mole at STP has 22.4 L of Gas
0.084 mole of Cl₂ at STP will be equal to 22.4 *0.084 = 1.88 litre of Cl₂
To know more about Faraday's Law
brainly.com/question/1640558
#SPJ1
Answer:
A solution labeled "0.105 M NaOH" would contain 0.105 moles of NaOH in each liter of solution.
Explanation:
The concentration of a solution in Molarity (M) stands for the number of moles of that substance contained in 1 L of solution.
Molarity = Concentration in mol/L = (Number of moles of solute) ÷ (Volume of solution in L)
Molarity = Concentration in mol/L = 0.105 M = 0.105 mol/L
Number of moles of solute = ?
Volume of solution in L = 1 L
0.105 = Number of moles of solute × 1
Number of moles of solute = 0.105 mole
Hence, a solution labeled "0.105 M NaOH" would contain 0.105 moles of NaOH in each liter of solution.
Hope this Helps!!!
Answer:
5.45*10⁻⁴ moles of silane gas (SiH₄) are present in 8.68 mL measured at 18°C and 1.50 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1.5 atm
- V= 8.68 mL= 0.00868 L (being 1000 mL= 1 L)
- n= ?
- R= 0.082

- T= 18 C= 291 K (being 0 C= 273 K)
Replacing:
1.5 atm* 0.00868 L= n* 0.082
*291 K
Solving:

n= 5.45*10⁻⁴ moles
<u><em>5.45*10⁻⁴ moles of silane gas (SiH₄) are present in 8.68 mL measured at 18°C and 1.50 atm.</em></u>