Answer:
When you move the burette slider to the top of a flask and add about 25 mL of NaOH to the flask, you will cause a concentration of OH- molecules. This will make the solution become a basic solution and make the litmus paper blue.
Explanation:
After reading your question, we can see that you are carrying out a test to discover the nature of the pH of a solution. This type of test uses litmus paper, which is an indicator of the presence of acids and bases, being able to determine the pH of a solution. This paper is soaked in organic ink and when placed in an acidic solution, it is red in color. However, when placed in a basic solution it has a blue color.
An acidic solution is one that has a high concentration of H+ atoms and has the ability to donate electrons. The basic solution, on the other hand, has a high concentration of OH- and has the capacity to receive electrons.
When you move the burette slider to the top of a flask and add about 25 mL of NaOH to the flask, you will cause a concentration of OH- molecules. This will make the solution become a basic solution and make the litmus paper blue, that is, the solution has the basic pH.
oops pls forgive me I accidentally did the wrong question.
Answer:
All atoms heavier than barium
Explanation:
In the periodic table, elements are divided into blocks. We have the;
s- block elements
p- block elements
d- block elements
f- block elements
However, immediately after Barium, we now encounter elements that have f-orbitals. Barium possesses a fully filled d-orbital. Hence after it, we see elements with 4f and 5f orbitals called the Lanthanides and actinides. The elements following the lanthanide and actinide series possess completely filled f-orbitals as inner orbitals.
Hence elements heavier than barium all possess f-orbitals.