1 in=2.54 cm=(2.54 cm)(1 m/100 cm)=0.0254 m
Therefore:
1 in=0.0254 m
1 in³=(0.0254 m)³=1.6387064 x 10⁻⁵ m³
Therefore:
8.06 in³=(8.06 in³)(1.6387064 x 10⁻⁵ m³ / 1 in³)≈1.321 x 10⁻⁴ m³.
Answer: 8.06 in³=1.321 x 10⁻⁴ m³
Answer:
constant at the speed of light
Answer:
For a body moving at a uniform velocity you can calculate the speed by dividing the distance traveled by the amount of time it took, for example one mile in 1/2 hour would give you 2 miles per hour. If the velocity is non-uniform all you can say is what the average speed is.
Two atoms of the element bind to form dinitrogen and it’s a colourless and odorless diatomic gas with the formula N2. Also Dinitrogen forms up about 78% of earths atmosphere
Answer:
F = -6472.9 N
F= -6.47 kN
Explanation:
First of all you have to convert the data to SI units
so for the velocity you have :
Vi = 43km/h *(1000m/1km)*(1h/3600s) ---> using conversion factors
Vi= 11.9444 m/s
dX : distance the passanger moves
dX = 54cm*(1m/100cm) --> using conversion factors
dX = 0.54 m
Now to calculate the force we are going to use the sum of focers equals to mass for acceleration:
Sum F = m*a
We have to find a so we are going to use the velocity's formula as follows to solve a:
Vf ^2 = Vi^2 +2*a*dX
Vf=0 --> the passenger does not move after the airbag inflates.
a= -(Vi^2)/(2*dX)
you solve de acceleration with the data you hae and you will find
a = -132.1 m/ s^2
Now you can solve the Sum F equation
Sum F = 49 Kg * (-132.1 m/s^2)
F = -6472.9 N
F= -6.47 kN