Answer:
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main() {
string name[5];
int age[5];
int i,j;
for ( i = 0; i<=4; i++ ) {
cout << "Please enter student's name:";
cin >> name[i];
cout << "Please enter student's age:";
cin >> age[i];
}
for (i=0;i<=4;i++){
cout<<"Age of "<< name[i]<<" is "<<age[i]<<endl;
}
}
Output of above program is displayed in figure attached.
Maximum shear stress in the pole is 0.
<u>Explanation:</u>
Given-
Outer diameter = 127 mm
Outer radius,
= 127/2 = 63.5 mm
Inner diameter = 115 mm
Inner radius,
= 115/2 = 57.5 mm
Force, q = 0
Maximum shear stress, τmax = ?
τmax 
If force, q is 0 then τmax is also equal to 0.
Therefore, maximum shear stress in the pole is 0.
Answer:
%Reduction in area = 73.41%
%Reduction in elongation = 42.20%
Explanation:
Given
Original diameter = 12.8 mm
Gauge length = 50.80mm
Diameter at the point of fracture = 6.60 mm (0.260 in.)
Fractured gauge length = 72.14 mm.
%Reduction in Area is given as:
((do/2)² - (d1/2)²)/(do/2)²
Calculating percent reduction in area
do = 12.8mm, d1 = 6.6mm
So,
%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²
%RA = 0.734130859375
%RA = 73.41%
Calculating percent reduction in elongation
%Reduction in elongation is given as:
((do) - (d1))/(d1)
do = 72.14mm, d1 = 50.80mm
So,
%RA = ((72.24) - (50.80))/(50.80)
%RA = 0.422047244094488
%RA = 42.20%
Solution:
Given that :
Volume flow is, 
So, 
Therefore, the equation of a single straight vessel is given by
......................(i)
So there are 100 similar parallel pipes of the same cross section. Therefore, the equation for the area is

or 
Now for parallel pipes
...........(ii)
Solving the equations (i) and (ii),




Therefore,

or 
Thus the answer is option A). 10
Answer:
sorry i dont understand the answer
Explanation:
but i think its a xd jk psml lol