Answer/ Explanation
the loop has no force and the wires cancel each other but the wire on the loop has a force
The segment a get the same force for both but in the loop segment b get an opposite force so the net force on the loop is smaller
The loop wire has forces that all cancel out while the other straight wire doesn't.
Yes. According to the coach's mathematical criteria, Tommy had a great season.
Sadly, Tommy doesn't even know it. His tone-deaf coach decided to describe success in terms that are absurd for 7-yr-olds, as well as for most of their parents.
Answer:
0.558 atm
Explanation:
We must first consider that both gases behaves like ideal gases, so we can use the following formula: PV=nRT
Then, we should consider that, whithin a mixture of gases, the total pressure is the sum of the partial pressure of each gas:
P₀ = P₁ + P₂ + ....
P₀= total pressure
P₁=P₂= is the partial pressure of each gass
If we can consider that each gas is an ideal gas, then:
P₀= (nRT/V)₁ + (nRT/V)₂ +..
Considering the molecular mass of O₂:
M O₂= 32 g/mol
And also:
R= ideal gas constant= 0.082 Lt*atm/K*mol
T= 65°C=338 K
4.98 g O₂ = 0.156 moles O₂
V= 7.75 Lt
Then:
P°O₂=partial pressure of oxygen gas= (0.156x0.082x338)/7.75
P°O₂= 0.558 atm
Answer:
a) 95950 pascals
b) 137642.5 pascals
Explanation:
The absolute pressure (Pabs) on a fluid is:
(1)
With Pgauge the pressure due depth on the fluid and Patm the atmospheric pressure. Pgauge is equal to:
(2)
with ρ the fluid density, g the gravitational acceleration and h the depth on the fluid. Using (2) on (1) and solving for Patm:



b) Here we're going to use again (1) but now we have another value of density because it's other liquid, to know that value we should use the fact that specific gravity (S.G) for liquids is the ratio between fluid density and water density:



so:


I think it’s C but not sure..