The molecular formula of sucrose is - C₁₂H₂₂O₁₁
molecular mass of sucrose - 342 g/mol
molarity of sucrose solution is 0.758 M
In 1 L solution the number of sucrose moles are - 0.758 mol
Therefore in 1.55 L solution, sucrose moles are - 0.758 mol/L x 1.55 L
= 1.17 mol
The mass of 1.17 mol of sucrose is - 1.17 mol x 342 g/mol = 4.00 x 10² g
Answer:
Oxygen is the most contain in earth but you asked in a,b,c and d. So I'll choice A. aluminium.
The Intermolecular force is a type of force which exists between particles in an Ideal gas.
<h3>What type of force which exists between particles in an Ideal gas?</h3>
Intermolecular forces are considered weaker attractions that hold molecules in gas close together. This force of attraction is present between molecules or particles.
So we can conclude that the Intermolecular force is a type of force which exists between particles in an Ideal gas.
Learn more about attraction here: brainly.com/question/1308963
#SPJ1
Answer: Oxygen and glucose are both reactants in the process of cellular respiration.
Explanation: Oxygen and glucose are both reactants in the process of cellular respiration. The main product of cellular respiration is ATP; waste products include carbon dioxide and water.
Answer : Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
Explanation :
The given molecule is, 
Three types of inter-molecular forces are present in this molecule which are Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
- Hydrogen-bonding : when the partial positive end of hydrogen is bonded with the partial negative end of another molecule like, oxygen, nitrogen, etc.
- Dipole-dipole attraction : When the partial positively charged part of the molecule is interact with the partial negatively charged part of the molecule. For example : In case of HCl.
- London-dispersion force : This force is present in all type of molecule whether it is a polar or non-polar, ionic or covalent. For example : In case of Br-Br , F-F, etc
Hydrogen-bonding is present between the oxygen and hydrogen molecule.
Dipole-dipole forces is present between the carbon and oxygen molecule.
London-dispersion forces is present between the carbon and carbon molecule.