Answer:
A body travels 10 meters during the first 5 seconds of its travel,and a total of 30 meters over the first 10 seconds of its travel
20miles / 5sec = 4miles /sec would be the average speed for the last 20 m
Explanation:
The answer is 4 m/s.
In the first 5 seconds, a body travelled 10 meters. In the first 10 seconds of the travel, the body travelled a total of 30 meters, which means that in the last 5 seconds, it travelled 20 meters (30m + 10m).
The relation of speed (v), distance (d), and time (t) can be expressed as:
v = d/t
We need to calculate the speed of the second 5 seconds of the travel:
d = 20 m (total 30 meters - first 10 meters)
t = 5 s (time from t = 5 seconds to t = 10 seconds)
Thus:
v = 20m / 5s = 4 m/s
PLEASE GIVE BRAINIEST!! HOPE THIS HELPS
I think it is B as 168/20
Answer: A symbolic expression for the net force on a third point charge +Q located along the y axis
![F_N=k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}](https://tex.z-dn.net/?f=F_N%3Dk_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D)
Explanation:
Let the force on +Q charge y-axis due to +2Q charge be
and force on +Q charge y axis due to -Q charge on x-axis be
.
Distance between the +2Q charge and +Q charge = d units
Distance between the -Q charge and +Q charge =
units
= Coulomb constant


Net force on +Q charge on y-axis is:




![|F_N|=|k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}|](https://tex.z-dn.net/?f=%7CF_N%7C%3D%7Ck_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D%7C)
The net froce on the +Q charge on y-axis is
![F_N=k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}](https://tex.z-dn.net/?f=F_N%3Dk_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D)