Answer:
The heat loss rate through one of the windows made of polycarbonate is 252W. If the window is made of aerogel, the heat loss rate is 16.8W. If the window is made of soda-lime glass, the heat loss rate is 1190.4W.
The cost associated with the heat loss through the windows for an 8-hour flight is:
For aerogel windows: $17.472 (most efficient)
For polycarbonate windows: $262.08
For soda-lime glass windows: $1,238.016 (least efficient)
Explanation:
To calculate the heat loss rate through the window, we can use a model of heat transmission by conduction throw flat wall. Using unidimensional Fourier law:

In this case:

If we replace the data provided by the problem we get the heat loss rate through one of the windows of each material (we only have to change the thermal conductivities).
To obtain the thermal conductivity of the soda-lime glass we use the graphic attached to this answer (In this case for soda-lime glass k₃₀₀=0.992w/m·K).
To calculate the cost associated with the heat loss through the windows for an 8-hour flight we use this formula (using the heat loss rate calculated in each case):

Sensor/Detectors/Transducers are electrical, opto-electrical, or electronic devices composed of specialty electronics or otherwise sensitive materials, for determining if there is a presence of a particular entity or function. Many vehicles including cars, trains, buses etc. all use sensors to monitor oil temperature and pressure, throttle and steering systems and so many more aspects.
Answer:
a) 22.5number
b) 22.22 m length
Explanation:
Given data:
Bridge length = 500 m
width of bridge = 12 m
Maximum temperature = 40 degree C
minimum temperature = - 35 degree C
Maximum expansion can be determined as

where , \alpha is expansion coefficient
degree C
SO, 

number of minimum expansion joints is calculated as

b) length of each bridge

Answer:The Urban heat island temperature will be REDUCED.
Two Impacts of Rooftop gardens
1) provision of shade against Sunlight.
2) It helps to purify the air around the building.
Explanation: Rooftop gardens are gardens made on top of the roofs of buildings, it is a Green initiative aimed at helping to improve the overall Environment.
Rooftop gardens have several significant benefits which includes
Reduction of the surrounding temperatures and the Urban heat Island temperatures.
Rooftop gardens helps to shade the roof from the direct impacts of harsh weather conditions.
Generally, plants are known as air purifiers as they remove the excess Carbondioxide around the environment through photosynthesis, and they also help to release water vapor which will help to improve the humidity of the environment.