Answer:
The correct answer is:
An electron will be emitted in the second experiment, but it cannot be determined whether it will reach the second plate.
Explanation:
In fact, violet has higher frequency than green light. This means that photons on violet carry more energy than photons of green light (remember that the energy of a photon is proportional to it's frequency:

, so when they hit the surface of the metal, more energy is transferred to the electrons. The electron was already emitted with green light, so it must be emitted with also violet light, given the more energy transferred.
Prescribed to you by your doctor.
I would use an over the counter antacids for occasional heart burn. If there are symptoms of acid reflux I would suggest a histamine blocker, or H2-Blockers, such as Ranitidine (Zantac) and Famotidine (Pepcid)
Your answer would be, Gas atoms subjected to the electricity emit bright lines of light.
Hop that helps!!!
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
The number 10,847,100 in Scientific Notation is 
Explanation:
Scientific notation is an easy form to write long numbers and it is commonly used in the scientific field. To write a long number in a shorter way it is necessary to 'move' the decimal point to the left the number of positions that are necessary until you get a unit. Then you write the number and multiplied it by 10 raised to the number of positions you moved the decimal point. In this case, it is necessary to move the decimal point 7 positions so, we multiply the number by 10 raised to 7.