Answer:
The gas was N₂
Explanation:
V = 3.6L
P = 2.0 atm
T = 24.0°C = 297K
R = 0.0821 L.atm/K.mol
m = 8.3g
M = molar mass = ?
Using ideal gas equation;
PV = nRT
n = no. Of moles = mass / molar mass
n = m/M
PV = m/M * RT
M = mRT / PV
M = (8.3*0.0821*297) / (2.0*3.6)
M = 28.10
Since X is a diatomic molecule
M = 28.10 / 2 = 14.05 g/mol
M = Nitrogen
X = N₂
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Note: This question is incomplete and lacks very important data to solve this question. But I have found the similar question which shows the profiles about which question discusses. Using the data from that question, I have solved the question.
a) We need to find the major species from A to F.
Major Species at A:
1. 
Major Species at B:
1. 
2. 
Major Species at C:
1. 
Major Species at D:
1. 
2. 
Major Species at E:
1. 
Major Species at F:
1. 
b) pH calculation:
At Halfway point B:
pH = pK
+ log[
]/[H
]
pH = pK
= 6.35
Similarly, at halfway point D.
At point D,
pH = pK
+ log [H
]/[H2
]
pH = pK
= 10.33
Magnesium bromide= MgBr2
Potassium chloride= KCl
The answer for the following mention bellow.
- <u><em>Therefore the final temperature of the gas is 260 k</em></u>
Explanation:
Given:
Initial pressure (
) = 150.0 kPa
Final pressure (
) = 210.0 kPa
Initial volume (
) = 1.75 L
Final volume (
) = 1.30 L
Initial temperature (
) = -23°C = 250 k
To find:
Final temperature (
)
We know;
According to the ideal gas equation;
P × V = n × R ×T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
We know;
= constant
×
= 
Where;
(
) represents the initial pressure of the gas
(
) represents the final pressure of the gas
(
) represents the initial volume of the gas
(
) represents the final volume of the gas
(
) represents the initial temperature of the gas
(
) represents the final temperature of the gas
So;
= 
(
) =260 k
<u><em>Therefore the final temperature of the gas is 260 k</em></u>
<u><em></em></u>
A volcano is formed when magma (Lava) spews up from deep within the earth. After each eruption the Volcano gets bigger and bigger, so basically after periods of time the volcano will get larger. Lava will rise in cracks in the earth or weak spots in the earths crust. The pressure is relieved thus resulting in a volcanic eruptions it forms the new crust and then eventually builds up in that spot making a volcano. They also form in places called hot spots and various other places.