Answer:
The correct option is;
A. honk your horn if you cannot see at least 200 ft ahead
Explanation:
According the California Driver Handbook on Safe Driving Practices, it is required of the driver driving on a narrow mountain road without clear visualization of what is 200 ft ahead of her or him to honk the horn of the vehicle.
The sounding of the horn will alert those ahead of the driver of the possible danger due to her or his oncoming vehicle so that they (those ahead of the driver's oncoming vehicle) can react appropriately.
Answer:
a) 0.477 W/m²
b) 13.407 N/C
c) 18.96 N/C
Explanation:
P = Power = 150 W
r = Distance = 5 m
ε₀ = Permittivity of space = 8.854×10⁻¹² F/m
a) Average intensity

∴ Average intensity is 0.477 W/m²
b) Rms value

∴ Rms value of the electric field is 13.407 N/C
c) Peak value

∴ Peak value of the electric field is 18.96 N/C
Answer:
y = y₀ (1 - ½ g y₀ / v²)
Explanation:
This is a free fall problem. Let's start with the ball that is released from the window, with initial velocity vo = 0 and a height of the window i
y = y₀ + v₀ t - ½ g t²
y = y₀ - ½ g t²
for the ball thrown from the ground with initial velocity v₀₂ = v
y₂ = y₀₂ + v₀₂ t - ½ g t²
in this case y₀ = 0
y₂2 = v t - ½ g t²
at the point where the two balls meet, they have the same height
y = y₂
y₀ - ½ g t² = vt - ½ g t²
y₀i = v t
t = y₀ / v
since we have the time it takes to reach the point, we can substitute in either of the two equations to find the height
y = y₀ - ½ g t²
y = y₀ - ½ g (y₀ / v)²
y = y₀ - ½ g y₀² / v²
y = y₀ (1 - ½ g y₀ / v²)
with this expression we can find the meeting point of the two balls
Answer:

Explanation:
The gravitational potential at a point on the Earth surface is given by:

where
G=6.67×10^-11Nm^2kg^-2 is the gravitational constant
M=5.98×10^24kg is the Earth's mass
R=6.38×10^6 m is the Earth's radius
Substituting the numbers into the equation, we find
