It's any of the almost spherical concentric regions of matter that make up the earth and it's atmosphere, as the lithosphere and hydrosphere.
Hope this helps... If you could, could you mark my answer as brainliest? I'm trying to level lol
Best Answer
1 mole of a substance contains 6.022x10^23 "units" of that substance.
So 0.187 mol of Na+ is 1.13x10^23 ions (6.022x10^23 x 0.187).
Possibly decomposition but not sure
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
The answer is: 27 grams of aluminium.
Balanced chemical reaction: 2Al + 3H₂SO₄ → Al₂(SO₄)₃ + 3H₂.
n(H₂) = 1.5 mol; amount of hydrogen.
Form chemical reaction: n(Al) : n(H₂) = 2 : 3.
n(Al) = 2 · 1.5 mol ÷ 3.
n(Al) = 1.0 mol; amount of aluminium.
m(Al) = n(Al) · M(Al).
m(Al) = 1 mol · 27 g/mol.
m(Al) = 27 g; mass of aluminium.