Stephen`s Law:
P = (Sigma) · A · e · T^4
P in = P out
e = 1 for blacktop;
1150 W = (Sigma) · T^4
(Sigma) = 5.669 · 10 ^(-8) W/m²K^4
T^4 = 1150 : ( 5.669 · 10^(-8) )
T^4 = 202.875 · 10^8
![T = \sqrt[4]{202.857 * 10 ^{8} }](https://tex.z-dn.net/?f=T%20%3D%20%20%5Csqrt%5B4%5D%7B202.857%20%2A%2010%20%5E%7B8%7D%20%7D%20)
T = 3.774 · 10² =
377.4 KAnswer: Equilibrium temperature is 377.4 K.
Question four bulbs A,B,C and D are connected in a circuit shown in the figure below, the letters X, Y and Z represent three switches. Which switch is used to operate switch A separately?
Answer: x
The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
<h3>What do you mean by electric potential? </h3>
The amount of work needed to move a unit charge from a reference point to a specific point against an electric field. It's SI unit is volt.
V = kq/r
Where V represents electric potential, K is coulomb constant, q is Charge and r is distance between any two around charge to the point charge.
Electric potential at O due to four charges is given by,
V = 4KQ/ r
where, r = √2a/2 = a/√2
V = 4k × Q√2/a
V = √2Q/πÈa
The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
To learn more about electric potential refer to:
brainly.com/question/12645463
#SPJ4
The potential energy of the box when it gets to the top is
(mass) (gravity) (height)
= (7 kg) (9.8 m/s²) (5 m)
= 343 joules.
That's the work done against the force of gravity. Any
additional work is done against the force of friction.
Answer:
B) Diphosphorus pentoxide
Explanation: