The Answer Would You Are Looking For Would Be:
~Expand.
Hope this helps.
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
Answer: 71.7 KJ
Explanation:
The rotational kinetic energy of a rotating body can be written as follows:
Krot = ½ I ω2
Now, any point on the rim of the flywheel, is acted by a centripetal force, according to Newton’s 2nd Law, as follows:
Fc = m. ac
It can be showed that the centripetal acceleration, is related with the angular velocity and the radius, as follows:
ac = ω2 r
We know that this acceleration has a limit value, so , we can take this limit to obtain a maximum value for the angular velocity also.
As the flywheel is a solid disk, the rotational inertia I is just ½ m r2.
Replacing in the expression for the Krot, we have:
Krot= ½ (1/2 mr2.ac/r) = ¼ mr ac = ¼ 67.0 Kg. 1.22 m . 3,510 m/s2 = 71. 7 KJ
Answer:
9.96x10^-20 kg-m/s
Explanation:
Momentum p is the product of mass and velocity, i.e
P = mv
Alpha particles, like helium nuclei, have a net spin of zero. Due to the mechanism of their production in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5 MeV, and a velocity in the vicinity of 5% the speed of light.
From this we calculate the speed as
v = 5% 0f 3x10^8 m/s (speed of light)
v = 1.5x10^7 m/s
The mass of an alpha particle is approximately 6.64×10−27 kg
Therefore,
P = 1.5x10^7 x 6.64×10^−27
P = 9.96x10^-20 kg-m/s