<u>Answer:</u> The Henry's law constant for oxygen gas in water is 
<u>Explanation:</u>
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = ?
= solubility of oxygen gas = 
= partial pressure of oxygen gas = 2.1 atm
Putting values in above equation, we get:

Hence, the Henry's law constant for oxygen gas in water is 
Answer: a. The concentrations of the reactants and products have reached constant values
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions. For a chemical equilibrium reaction, equilibrium state is achieved when the rate of forward reaction becomes equal to rate of the backward reaction.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time and are constant.
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For a equilibrium reaction,

![K_{eq}=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
Thus the correct answer is the concentrations of the reactants and products have reached constant values.
Answer:
4
Explanation:
Si has atomic number 14 so the electronic configuration 2,8,4
Answer:
80L
Explanation:
V1/T1 = V2/T2
V2 = V1 T2/T1
T1 = 300K
V1 = 60L
T2 = 400K
V2 = ?
V2 = V1 T2/T1
V2 = (60L)(400K) / (300K)
V2 = 80L