Answer:
The second one
Explanation:
The second one is joining so it is the one which belongs to X, first one belongs to Z
Answer:The small, individual helium molecules can escape through the tiny holes in the latex far more easily than the conjoined oxygen or nitrogen molecules can. ... This is why your helium balloons deflate faster than the ones you fill with air.
Explanation:
Answer:
You input potential energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this is kind of potential energy is specifically called elastic potential energy.
Answer:
The sound intensity level in the car is 57.2 dB.
Explanation:
Sound intensity level in decibels, β = 10 log (I/I₀); where I = 0.525 × 10⁻⁶ W/m², I₀ = 1.0 × 10⁻¹² W/m²
β (dB) = 10 log ((0.525 × 10⁻⁶)/(1.0 × 10⁻¹²)) = 10 × 5.72 = 57.2 dB
Hope this Helps!!!
<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>