Answer:
The height is 
A circular hoop of different diameter cannot be released from a height 30cm and match the sphere speed because from the conservation relation the speed of the hoop is independent of the radius (Hence also the diameter )
Explanation:
From the question we are told that
The height is 
The angle of the slope is 
According to the law of conservation of energy
The potential energy of the sphere at the top of the slope = Rotational kinetic energy + the linear kinetic energy

Where I is the moment of inertia which is mathematically represented as this for a sphere

The angular velocity
is mathematically represented as

So the equation for conservation of energy becomes
![mgh_s = \frac{1}{2} [\frac{2}{5} mr^2 ][\frac{v}{r} ]^2 + \frac{1}{2}mv^2](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cfrac%7B2%7D%7B5%7D%20mr%5E2%20%5D%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
![mgh_s = \frac{1}{2} mv^2 [\frac{2}{5} +1 ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B2%7D%7B5%7D%20%2B1%20%5D)
![mgh_s = \frac{1}{2} mv^2 [\frac{7}{5} ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B7%7D%7B5%7D%20%5D)
![gh_s =[\frac{7}{10} ] v^2](https://tex.z-dn.net/?f=gh_s%20%3D%5B%5Cfrac%7B7%7D%7B10%7D%20%5D%20v%5E2)

Considering a circular hoop
The moment of inertial is different for circle and it is mathematically represented as

Substituting this into the conservation equation above
![mgh_c = \frac{1}{2} (mr^2)[\frac{v}{r} ] ^2 + \frac{1}{2} mv^2](https://tex.z-dn.net/?f=mgh_c%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%28mr%5E2%29%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%20%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
Where
is the height where the circular hoop would be released to equal the speed of the sphere at the bottom



Recall that 


Substituting values

Yes, this is a true statement.
gravity is so important.
Answer:
from food eaten (i.e contain carnlbohyadrates)
To solve this exercise it is necessary to apply the concepts related to Robert Boyle's law where:

Where,
P = Pressure
V = Volume
T = Temperature
n = amount of substance
R = Ideal gas constant
We start by calculating the volume of inhaled O_2 for it:


Our values are given as
P = 1atm
T=293K 
Using the equation to find n, we have:




Number of molecules would be found through Avogadro number, then


It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2