1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
3 years ago
11

A clean machine is a _______________ machine.

Engineering
1 answer:
solniwko [45]3 years ago
4 0
A clean machine is a clean machine :-)
You might be interested in
How can any student outside apply for studying engineering at Cambridge University​
telo118 [61]
Admission to the Engineering course at Cambridge is highly competitive, both in terms of the numbers and quality of applicants. In considering applicants, Colleges look for evidence both of academic ability and of motivation towards Engineering. There are no absolute standards required of A Level achievement, but it should be noted that the average entrant to the Department has three A* grades. You need to get top marks in Maths and Physics.All Colleges strongly prefer applicants for Engineering to be taking a third subject that is relevant to Engineering.
Hope that helps and good luck if you are applying. Can you please mark this as brainliest and press the thank you button and if you have any further questions please let me know!!
3 0
3 years ago
Air at 293k and 1atm flow over a flat plate at 5m/s. The plate is 5m wide and 6m long. (a) Determine the boundary layer thicknes
loris [4]

Answer:

a). 8.67 x 10^{-3} m

b).0.3011 m

c).0.0719 m

d).0.2137 N

e).1.792 N

Explanation:

Given :

Temperature of air, T = 293 K

Air Velocity, U = 5 m/s

Length of the plate is L  = 6 m

Width of the plate is b = 5 m

Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X 10^{-5} Pa-s

We know density of air is ρ = 1.21 kg /m^{3}

Now we can find the Reyonld no at x = 1 m from the leading edge

Re = \frac{\rho .U.x}{\mu }

Re = \frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }

Re = 332052.6

Therefore the flow is laminar.

Hence boundary layer thickness is

δ = \frac{5.x}{\sqrt{Re}}

   = \frac{5\times 1}{\sqrt{332052.6}}

   = 8.67 x 10^{-3} m

a). Boundary layer thickness at x = 1 is δ = 8.67 X 10^{-3} m

b). Given Re = 100000

    Therefore the critical distance from the leading edge can be found by,

     Re = \frac{\rho .U.x}{\mu }

     100000 = \frac{1.21\times5\times x}{1.822 \times10^{-5}}

     x = 0.3011 m

c). Given x = 3 m from the leading edge

    The Reyonld no at x = 3 m from the leading edge

     Re = \frac{\rho .U.x}{\mu }

     Re = \frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }

     Re = 996158.06

Therefore the flow is turbulent.

Therefore for a turbulent flow, boundary layer thickness is

    δ = \frac{0.38\times x}{Re^{\frac{1}{5}}}

       = \frac{0.38\times 3}{996158.06^{\frac{1}{5}}}

       = 0.0719 m

d). Distance from the leading edge upto which the flow will be laminar,

  Re = \frac{\rho \times U\times x}{\mu }

5 X 10^{5} = \frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}

 x = 1.505 m

We know that the force acting on the plate is

F_{D} = \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

and C_{D} at x= 1.505 for a laminar flow is = \frac{1.328}{\sqrt{Re}}

                                                                         = \frac{1.328}{\sqrt{5\times10 ^{5}}}

                                                                       = 1.878 x 10^{-3}

Therefore, F_{D} =  \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

                                          = \frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}

                                         = 0.2137 N

e). The flow is turbulent at the end of the plate.

  Re = \frac{\rho \times U\times x}{\mu }

       = \frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }

       = 1992316

Therefore C_{D} = \frac{0.072}{Re^{\frac{1}{5}}}

                                           = \frac{0.072}{1992316^{\frac{1}{5}}}

                                           = 3.95 x 10^{-3}

Therefore F_{D} = \frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}

                                           = \frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}

                                          = 1.792 N

3 0
3 years ago
Refrigerant 134a enters an air conditioner compressor at 4 bar, 20 C, and is compressed at steady state to 12 bar, 80 C. The vol
sleet_krkn [62]

Answer:

Q=15.7Kw

Explanation:

From the question we are told that:

Initial Pressure P_1=4bar

Initial Temperature T_1=20 C

Final Pressure  P_2=12 bar

Final Temperature T_2=80C

Work Output W= 60 kJ/kg

Generally Specific Energy from table is

At initial state

 P_1=4bar \& T_1=20 C

 E_1=262.96KJ/Kg

With

Specific Volume V'=0.05397m^3/kg

At Final state

 P_2=12 bar \& P_2=80C

 E_1=310.24KJ/Kg

Generally the equation for The Process is mathematically given by

 m_1E_1+w=m_2E_2+Q

Assuming Mass to be Equal

 m_1=m_1

Where

 m=\frac{V}{V'}

 m=frac{0.06666}{V'=0.05397m^3/kg}

 m=1.24

Therefore

 1.24*262.96+60)=1.24*310.24+Q

 Q=15.7Kw

4 0
3 years ago
A(n) ______ is used to measure fluid flow in engineering
Arte-miy333 [17]

Answer:

A pitot tube is used to measure fluid flow in engineering

3 0
2 years ago
A storage tank, used in a fermentation process, is to be rotationally molded from polyethylene plastic. This tank will have a co
NNADVOKAT [17]

Answer:

The volume up to cylindrical portion is approx  32355 liters.

Explanation:

The tank is shown in the attached figure below

The volume of the whole tank is is sum of the following volumes

1) Hemisphere top

Volume of hemispherical top of radius 'r' is

V_{hem}=\frac{2}{3}\pi r^3

2) Cylindrical Middle section

Volume of cylindrical middle portion of radius 'r' and height 'h'

V_{cyl}=\pi r^2\cdot h

3) Conical bottom

Volume of conical bottom of radius'r' and angle \theta is

V_{cone}=\frac{1}{3}\pi r^3\times \frac{1}{tan(\frac{\theta }{2})}

Applying the given values we obtain the volume of the container up to cylinder is

V=\pi 1.5^2\times 4.0+\frac{1}{3}\times \frac{\pi 1.5^{3}}{tan30}=32.355m^{3}

Hence the capacity in liters is V=32.355\times 1000=32355Liters

3 0
3 years ago
Other questions:
  • The position of a particle moving along a straight line is defined by the relation. s = t^3 – 6t^2 – 15t + 40, where s is expres
    13·1 answer
  • Given a series of numbers as input, add them up until the input is 10 and print the total. Do not add the final 10. For example,
    7·1 answer
  • NASA SPACE SHUTTLE QUESTION:
    14·1 answer
  • A compressed-air drill requires an air supply of 0.25 kg/s at gauge pressure of 650 kPa at the drill. The hose from the air comp
    6·1 answer
  • Find the general solution of the equation<br>a) Tan A = 1/√3​
    11·1 answer
  • Zack's new home is progressing well, and the foundation work is finished. The general contractor stops by Zack's present home to
    11·1 answer
  • Random question, does anyone here use Lego, do not answer unless that is a yes
    15·2 answers
  • A benefit to using the medium the author used in "Great Rock and Roll
    12·2 answers
  • If a condenser has high head pressure and a higher than normal temperature, a technician could ____.
    7·1 answer
  • Flip-flops are normally used for all of the following applications, except ________. logic gates data storage frequency division
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!