Answer:
a) 24.7 mol
b) 790 g
Explanation:
Step 1: Given data
- Volume of the chamber (V): 200. L
- Room temperature (T): 23 °C
- Pressure of the gas (P): 3.00 atm
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 23°C + 273.15 = 296 K
Step 3: Calculate the moles (n) of oxygen
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 3.00 atm × 200. L/(0.0821 atm.L/mol.K) × 296 K = 24.7 mol
Step 4: Calculate the mass (m) corresponding to 24.7 moles of oxygen
The molar mass (M) of oxygen ga sis 32.00 g/mol. We will calculate the mass of oxygen using the following expression.
m = n × M
m = 24.7 mol × 32.00 g/mol = 790 g
<h3>Yes mam it is tinder .....</h3>
It is transferred by conduction when two objects at two different temps touch each other, and the one with the most heat will transfer its heat to the cooler object until they both have the same temperature..
At the point of touching the fast moving molecules of the warmer object will collide with the slower moving molecules of the cooler object.
Your answer would be the solute in the ocean water. Hope this helps!
Enthalpy change during the dissolution process = m c ΔT,
here, m = total mass = 475 + 125 = 600 g
c = <span>specific heat of water = 4.18 J/g °C
</span>ΔT = 7.8 - 24 = -16.2 oc (negative sign indicates that temp. has decreases)
<span>
Therefore, </span>Enthalpy change during the dissolution = 600 x 4.18 X (-16.2)
= -40630 kJ
(Negative sign indicates that process is endothermic in nature i.e. heat is taken by the system)
Thus, <span>enthalpy of dissolving of the ammonium nitrate is -40630 J/g</span>