1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
2 years ago
9

When working with two-dimensional motion, choose the direction of _________________ to be a positive direction.

Physics
2 answers:
VLD [36.1K]2 years ago
8 0

Rightward and upward

<h3>What is One-dimensional motion and two-Dimensional Motion?</h3>

Whenever any object moves in one direction only, the motion is known as one-dimensional motion.

Two-dimensional motion is the movement of the object in two directions simultaneously.
Example: A ball thrown at an angle is a two-dimensional motion.

In two-dimensional motion, there are two axes used, generally the x-axis and the y-axis.

Generally, the x-axis is positive towards the rightward direction and negative towards the leftward direction.

Similarly, the y- axis is positive towards the upward direction and negative toward the downward direction.

So, the rightward and upward directions are chosen as positive.

Therefore:

When working with two-dimensional motion, choose the direction of  , <u>the rightward and upward</u> to be a positive direction.

Learn more about One-dimensional motion and two-Dimensional Motion here:brainly.com/question/15520444

#SPJ2

emmainna [20.7K]2 years ago
6 0

Answer:

two dimensional to the motion means motion that takes place into different directions or coordinators at the same time the simplest motion would be an object moving liner in one dimension and example of liner movement would be car moving along a state rod and ball thrown straight from the ground

You might be interested in
Two charges (q1 = 3.8*10-6C, q2 = 3.2*10-6C) are separated by a distance of d = 3.25 m. Consider q1 to be located at the origin.
Sergio039 [100]

Answer:

The distance is 1.69 m.

Explanation:

Given that,

First charge q_{1}= 3.8\times10^{-6}\ C

Second charge q_{2}=3.2\times10^{-6}\ C

Distance = 3.25 m

We need to calculate the distance

Using formula of electric field

E_{1}=E_{2}

\dfrac{kq_{1}}{x^2}=\dfrac{kq_{2}}{(d-x)^2}

\dfrac{q_{1}}{q_{2}}=\dfrac{(x)^2}{(d-x)^2}

\sqrt{\dfrac{q_{1}}{q_{2}}}=\dfrac{x}{d-x}

x=(d-x)\times\sqrt{\dfrac{q_{1}}{q_{2}}}

Put the value into the formula

x=(3.25-x)\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x+x\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x=\dfrac{3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}}{(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})}

x=1.69\ m

Hence, The distance is 1.69 m.

5 0
3 years ago
Name two examples where the cohesive force dominates over the adhesive force and vice versa​
lidiya [134]
Attractive forces between molecules of the same type are called cohesive forces. ... Attractive forces between molecules of different types are called adhesive forces. Such forces cause liquid drops to cling to window panes, for example.
5 0
3 years ago
The loop is in a magnetic field 0.20 T whose direction is perpendicular to the plane of the loop. At t = 0, the loop has area A
love history [14]

Answer:

Part a)

EMF = 14 \times 10^{-3} V

Part b)

EMF = 15.67 \times 10^{-3} V

Explanation:

As we know that magnetic flux through the loop is given as

\phi = B.A

now we have

\phi = B\pi r^2

now rate of change in flux is given as

\frac{d\phi}{dt} = B(2\pi r)\frac{dr}{dt}

now we know that

A = \pi r^2

0.285 = \pi r^2

r = 0.30 m

Now plug in all data

EMF = (0.20)\times 2\pi\times (0.30) \times (0.037)

EMF = 14 \times 10^{-3} V

Part b)

Now the radius of the loop after t = 1 s

r_1 = r_0 + \frac{dr}{dt}

r_1 = 0.30 + 0.037

r_1 = 0.337 m

Now plug in data in above equation

EMF = (0.20)\times 2\pi\times (0.337) \times (0.037)

EMF = 15.67 \times 10^{-3} V

5 0
3 years ago
Which statement describes a good physical property of copper
frez [133]
It is number 3 because I know it is
4 0
3 years ago
Read 2 more answers
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.
kow [346]

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

3 0
3 years ago
Other questions:
  • A magnesium surface has a work function of 3.60 eV. Electromagnetic waves with a wavelength of 320 nm strike the surface and eje
    14·1 answer
  • Calculate the reactance of a 0.5 F capacitor that is connected to a battery with peak voltage 2 V and angular frequency 200 radi
    9·1 answer
  • Within the visible spectrum, our experience of red is associated with ________. shorter wavelengths intermediate wavelengths wav
    8·1 answer
  • A stationary shell is exploded in to three fragments A, B, C of masses in the ratio 1:2:3. A travels
    5·1 answer
  • Asteroid A has 3.5 times the mass and 2.0 times the velocity of Asteroid B. If
    13·1 answer
  • What are the three subatomic particles that make up an atom
    9·1 answer
  • B. What information did Wegener not have that would have strengthened his argument? (3
    9·1 answer
  • In any one material, all electromagnetic waves have the same
    8·1 answer
  • The temperature measurement scale that begins at absolute zero is
    15·2 answers
  • PLZZZZZZ HELP 50 POINTS Directions
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!