<span>The bullfrog is sitting at rest on the log. The force of gravity pulls down on the bullfrog. We can find the weight of the bullfrog due to the force of gravity.
weight = mg = (0.59 kg) x (9.80 m/s^2)
weight = 5.782 N
The bullfrog is pressing down on the log with a force of 5.782 newtons. Newton's third law tells us that the log must be pushing up on the bullfrog with a force of the same magnitude. Therefore, the normal force of the log on the bullfrog is 5.782 N</span>
Something that there is only so many of or not enough of
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Answer with Explanation:
We are given that
Diameter of fighter plane=2.3 m
Radius=
a.We have to find the angular velocity in radians per second if it spins=1200 rev/min
Frequency=
1 minute=60 seconds
Angular velocity=
Angular velocity=
b.We have to find the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac.

c.Centripetal acceleration=
Centripetal acceleration==