Answer:
Percent yield of PI3 = 95.4%
Explanation:
This is the reaction:
2P (s) + 3I2 (g) > 2PI3 (g)
Let's determine the moles of iodine that has reacted.
58.6 g / 253.8 g/mol = 0.231 mol
Ratio is 3:2. Let's make a rule of three to state the moles produced at 100 % yield reaction.
3 moles of I2 react to make 2 moles of PI3
0.231 moles of I2 would make (0.231 .2) / 3 = 0.154 moles of PI3
As we have produced 0.147 moles let's determine the percent yield.
(Yield produced / Theoretical yield) . 100 > (0.147 / 0.154) . 100 = 95.4%
Answer:
Cell cycle.
Explanation:
A cell can be defined as the fundamental or basic functional, structural and smallest unit of life for all living organisms. Some living organisms are unicellular while others are multicellular in nature.
A unicellular organism refers to a living organism that possess a single-cell while a multicellular organism has many (multiple) cells.
Generally, cells have the ability to independently replicate themselves. These cells can be compared to the kind of structures found in a business or factory, where you have different workers performing different functions.
In a cell, the "workers" that perform various functions or tasks for the survival of the living organism are referred to as organelles and they include nucleus, cytoplasm, cell membrane, golgi apparatus, mitochondria, lysosomes, ribosomes, chromosomes, endoplasmic reticulum, vesicles, etc.
The regular sequence of growth and division that cells undergo is called the cell cycle. This cycle makes it possible for the cells found in living organisms to divide and produce new cells.
Basically, there are four (4) phases of the cell cycle and these are;
I. Prophase.
II. Metaphase.
III. Anaphase.
IV. Telophase.
There are a lot of separation processes. To name a few, these can be distillation, centrifugation, extraction, membrane or sorption process and many other. To know which is the best technique, you should know the property between two substances that have a stark difference. In this case, it is the polarity. Ethyl alcohol is more polar than ethyl ester and less dense. Thus, these two won't mix. So, take advantage of their density difference by decantation or centrifugation.
This may help you
<span>You need to use some stoichiometry here. The only way to do that is if you're working in moles. Since you're given grams of Al, you can convert that moles by dividing by the molar mass.
Then from looking at the coefficients in your equation, you can see that for however many moles of Al react, the same numbers of moles of Fe will be produced, but only half as many moles of Al2O3 will be produced.
To go back to grams, multiply the moles of each product that you get by their molar masses!</span>