Answer:



Explanation:
From the question we are told that:

at Temp=400K
Generally the equation for Radiosity is mathematically given by




Generally the equation for net radiation heat flux
is mathematically given by


Generally the equation for and the rate of plate temp
is mathematically given by



Answer:
2.65 MPa
Explanation:
To find the normal stress (σ) in the wall of the basketball we need to use the following equation:

<u>Where:</u>
p: is the gage pressure = 108 kPa
r: is the inner radius of the ball
t: is the thickness = 3 mm
Hence, we need to find r, as follows:

<u>Where:</u>
d: is the outer diameter = 300 mm

Now, we can find the normal stress (σ) in the wall of the basketball:
Therefore, the normal stress is 2.65 MPa.
I hope it helps you!
Answer:
Stress corrosion cracking
Explanation:
This occurs when susceptible materials subjected to an environment that causes cracking effect by the production of folds and tensile stress. This also depends upon the nature of the corrosive environment.
Factors like high-temperature water, along with Carbonization and chlorination, static stress, and material properties.
The air flow necessary to remain at the lower explosive level is 4515. 04cfm
<h3>How to solve for the rate of air flow</h3>
First we have to find the rate of emission. This is solved as
2pints/1.5 x 1min
= 2/1.5x60
We have the following details
SG = 0.71
LEL = 1.9%
B = 10% = 0.1 a constant
The molecular weight is given as 74.12
Then we would have Q as
403*100*0.2222 / 74.12 * 0.71 * 0.1
= Q = 4515. 04
Hence we can conclude that the air flow necessary to remain at the lower explosive level is 4515. 04cfm
Read more on the rate of air flow on brainly.com/question/13289839
#SPJ1
20% of the jerseys are medium sized