The object did not move / was kept from moving.
The moment of a couple is Force × perpendicular distance from the arm of the line of action
so the arm of the couple= moment of couple/force=8.5/34=0.25m
the arm is 0.25m
Answer:
8.80 Hz
Explanation:
The frequency of a loaded spring is given by

where k and m are the spring constant and the mass of the load respectively. The values of these do not change because they are internal properties of the components of the system.
Hence, the frequency of the vertical spring mass does not change and is 8.80 Hz.
On the other hand, the frequency of the simple pendulum is affected because it is given by

where g and l are acceleration due to gravity and length of the pendulum, respectively. It is thus seen that it depends on g, which changes with location. In fact, the new frequency is given by

Answer:
p = 8N/mm2
Explanation:
given data ;
diameter of cylinder = 150 mm
thickness of cylinder = 6 mm
maximum shear stress = 25 MPa
we know that
hoop stress is given as =
axial stress is given as =
maximum shear stress = (hoop stress - axial stress)/2
putting both stress value to get required pressure


t = 6 mm
d = 150 mm
therefore we have pressure
p = 8N/mm2
“Don't hand that holier than thou line to me” is what the asymptote
said to the removable discontinuity.
The distance between the
curve and the line where it approaches zero as they tend to infinity is the line in the asymptote
of a curve. This is unusual for modern authors but in some
sources the requirement that the curve may not cross the line infinitely often
is included.
The point that does not fit the rest of the graph or is
undefined is called a removable discontinuity. By filling in a single
point, the removable discontinuity can be made connected.