Answer:
Friction always acts opposite to the motion.
2ω is the resistance of the second wire if the resistance of the first is 4ω if two wires have the same length, but the second has twice the diameter of the first.
R= 4ω.
R = ρl/A
2d=r
R2=2ω
Resistance is the capacity of a conductor to obstruct the passage of an electric current through it. It is controlled by the interaction of the applied voltage and the electric current passing through it.
Conductors have very little resistance, whereas insulators have a significant amount of resistance. The resistance increases as the current flow decreases. Resistance is influenced by the properties and dimensions of the material (area of cross section)
To know more about resistance visit : brainly.com/question/14547003
#SPJ4
Answer:
a. A baseball after it has been hit - not in free fall
b. A rock that is thrown in the air - not in free fall
c. The moon - free-fall
d. A paper airplane - not in free fall
e. A bird flying - not in free fall
Explanation:
- The free-fall is defined as the falling of an object due to the action of gravity. The object is not experiencing any other force neglecting the air resistance.
- If an object is in free-fall, the direction of its motion is directed towards the center of the earth. It does not have a horizontal component of velocity.
- If the body is under free-fall, but a centripetal force acts on it where it is equal to the gravitational force at that point. The object will have two components of velocity along the tangential line, perpendicular to the radius of the orbit.
a. A baseball after it has been hit - not in free fall according to point 1 & 2.
b. A rock that is thrown in the air - not in free fall according to point 1.
c. The moon - free-fall according to point 3.
d. A paper airplane - not in free fall according to point 1 & 2.
e. A bird flying - not in free fall according to point 1 & 2.
Answer:
in the nucleus of the atom
Explanation:
a p 3 x
Answer:
Angular acceleration = 5 rad /s ^2
Kinetic energy = 0.391 J
Work done = 0.391 J
P =6.25 W
Explanation:
The torque is given as moment of inertia × angular acceleration
angular acceleration = torque/ moment of inertia
= 10/2= 5 rad/ s^2
The kinetic energy is = 1/2 Iw^2
w = angular acceleration/time
=5/8= 0.625 rad /s
1/2 × 2× 0.625^2
=0.391 J
The work done is equal to the kinetic energy of the motor at this time
W= 0.391 J
The average power is = torque × angular speed
= 10× 0.625
P = 6.25 W