Answer:
U_2 = 578.359 m /s
d_e = 1.4924 cm
Explanation:
Given:
Length of nozzle L = 25 cm
Inlet diameter d_i = 5 cm
Nozzle Entrance : T_1 = 325 C , P_1 = 700 KPa , U_1 = 30 m / s , H_1 = 3112.5 KJ / kg , V_1 = 388.61 cm^3 / g
Nozzle Exit : T_2 = 250 C , P_2 = 350 KPa , U_2, H_2 = 2945.7 KJ / kg , V_2 = 667.75 cm^3 / g
To Find:
a. Velocity at exit U_2
b. Exit Diameter d_e
a.
Energy Equation is given as:
ΔH + ΔU^2 / 2 + gΔz = Q + W
Q = W = Δz = 0
Substitute the values:
(H_2 - H_1 ) + (U^2_2 - U^2_1 ) / 2 = 0
U_2 = sqrt((2* (H_1 - H_2 ) ) + U^2_1)
U_2 = sqrt ( 2 * 10^3 * (3112.5 -2945.7) + 900)
U_2 = 578.359 m / s
b.
Mass Balance :
U_1 * A_1 / V_1 = U_2 * A_2 / V_2
A = pi*d^2 / 4
U_1 * d_i ^ 2 / V_1 = U_2 * d_e ^2 / V_2
d_e = d_i * sqrt ( (U_1 / U_2) * (V_2 / V_1))
d_e = 5 * sqrt ((30 / 578.359) * (667.75 / 388.61))
d_e = 1.4924 cm