Answer:
YES
Explanation:
Entropy is an extensive property of the system entropy change that value of entropy change can be determined for any process between the states whether reversible or not. i have attached the formula to calculate entropy change which is independent of whether the system is reversible or not and can be determined for any process.
Answer:
Explanation:
Hands-on Activity Bubbling Plants Experiment to Quantify Photosynthesis ... After running the experiment, students pool their data to get a large sample ... Explain that photosynthesis is a process that plants use to convert light ... Describe a simple experiment that provides indirect evidence that photosynthesis is occurring.
Through photosynthesis, certain organisms convert solar energy (sunlight) into ... of our planet continuously and is transferred from one organism to another. Therefore, directly or indirectly, the process of photosynthesis provides most of the energy ... Biology in Action ... Chlorophyll is responsible for the green color of plants.Photosynthetic organisms capture energy from the sun and matter from the air to ... oxygen produced during photosynthesis makes leaf bits float like bubbles in water. ... their ability to carry out photosynthesis, the biochemical process of capturing ... this air is forced out and replaced with solution, causing the leaves to sink.
Answer: a) 135642 b) 146253
Explanation:
A)
1- the bankers algorithm tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, as stated this has the greatest degree of concurrency.
3- reserving all resources in advance helps would happen most likely if the algorithm has been used.
5- Resource ordering comes first before detection of any deadlock
6- Thread action would be rolled back much easily of Resource ordering precedes.
4- restart thread and release all resources if thread needs to wait, this should surely happen before killing the thread
2- only option practicable after thread has been killed.
Bii) ; No. Even if deadlock happens rapidly, the safest sequence have been decided already.
Answer:
Q=67.95 W
T=119.83°C
Explanation:
Given that
For air
Cp = 1.005 kJ/kg·°C
T= 20°C
V=0.6 m³/s
P= 95 KPa
We know that for air
P V = m' R T
95 x 0.6 = m x 0.287 x 293
m=0.677 kg/s
For gas
Cp = 1.10 kJ/kg·°C
m'=0.95 kg/s
Ti=160°C ,To= 95°C
Heat loose by gas = Heat gain by air
[m Cp ΔT] for air =[m Cp ΔT] for gas
by putting the values
0.677 x 1.005 ( T - 20)= 0.95 x 1.1 x ( 160 -95 )
T=119.83°C
T is the exit temperature of the air.
Heat transfer
Q=[m Cp ΔT] for gas
Q=0.95 x 1.1 x ( 160 -95 )
Q=67.95 W