We can use the ideal gas law equation to find the volume occupied by oxygen gas
PV = nRT
where ;
P - pressure - 52.7 kPa
V - volume
n - number of oxygen moles - 12.0 g / 32 g/mol = 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values in the equation
52 700 Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
V = 17.6 L
volume of the gas is 17.6 L
Answer:
Explained below.
Explanation:
A substance at low temperature simply means that the average energy of molecular motion in that substance is low while at higher temperature, the average energy of molecular ml tip in that substance is high.
A. 2-Fluoro-3-Chlorohexane
B. 1-Bromo-2-Chloro-3-Fluorocyclopentane
C. 4-ethyl-5-methylhexane
D. 2,4,5-trimethylheptane
I believe it would be the first option. It forms iron oxide (rust) when exposed to moisture and air.
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K