Hydroelectricity is the best answer.
This is an article by the EIA, but the pie graph is the most helpful: https://www.eia.gov/energyexplained/?page=us_energy_home
The energy becomes 0.50 times in 6.72 s.
Let E represent the oscillator's initial energy, Et be the energy's final value at time t, where A is its beginning amplitude, At amplitude at time t, be. as the oscillator's energy increases to 0.50 times its initial value. We can replace the oscillator's total energy for the energy at time t to obtain the amplitude as shown below.
Et=0.50E
1
k(4₂)² = (0.5) - kA²
(4₂)² = (0.5) A²
At = 0.71A
So, the amplitude of the oscillator becomes 0.71 times its initial ar
0.71A = = A(0.96)¹2
log(0.71)
log(0.96)
8.4
n=
So, the time taken for n oscillation is obtained as,
t = n (0.800 s)
= (8.4) (0.800)
= 6.72 s
learn more about oscillators brainly.com/question/15169199
#SPJ1
Less than because a mile is 1600 meters
We know, Potential Energy = Force * Height
Here, F = 40 N
h = 5 m
Substitute their values,
U = 40 * 5
U = 200 J
In short, Your Answer would be Option A
Hope this helps!
The speed of sound on planet is 210 m/s.
<h3>
What is Oscillation?</h3>
Oscillation is the repeating or periodic change of a quantity around a central value or between two or more states, often in time. Alternating current and a swinging pendulum are two common examples of oscillation.
There are 3 main types of Oscillation –
- Free
- damped
- forced oscillation
f = frequency = 600 Hz
lambda = wavelength = 35 cm = 0.35 m
Now,
V = speed = f × lambda = 210 m/s
Hence, speed of sound on planet is 210 m/s.
to learn more about oscillation go to -
brainly.com/question/12622728
#SPJ4