If DNA is improperly copied, the cell will function differently.
This is called a mutation.
Mutated cells do not do the originally intended purpose.
Answer:
The bulbs should be connected in parallel.
Explanation:
We want to find out a way to hook up 2 light bulbs and a battery so that when one bulb burns out or is disconnected the other bulbs stays lit.
We must connect the two bulbs in parallel so that even when one bulb is burns out, it will have no effect on the other bulb and the 2nd bulb will keep on working. The current flowing in each bulb will depend upon the resistance of each bulb and the voltage will be same across each bulb.
On the other hand, if we use a series circuit then if one bulb burns out then the there is no flow of current in the circuit and therefore, the second bulb will not be operational.
The current flowing through each bulb is given by
I = V/R
The voltage across each bulb is given by
V = IReq
Where I is the current and Req is the equivalent resistance of the two bulbs connected in parallel and is given by
Req = (R₁*R₂)/(R₁+R₂)
The connection diagram is attached where two bulbs are connected in parallel and are power with a battery.
Answer: Option (C)
Explanation: Rock cycle plays an important role in the alteration of rocks from one form to another.
- Igneous rocks when undergoes high temperature and pressure condition, it transforms into a metamorphic rock.
- Sedimentary rocks are formed from the sedimentation and consolidation of sediments
- Igneous rocks are formed due to the crystallization of magma.
Hence the correct answer is option (C)
Answer:
<em>765,000Joules or 765kJ</em>
Explanation:
The Quantity of heat required is expressed as;
Q = (mcΔt)al + (mcΔt)water
m is the mass
c is specific heat capacity
Δt is the change in temperature
Q = (3(900)(90-5)) + (1.5(4200)(90-5))
Q = 2700*85 + 6300*85
Q = (2700+6300)85
Q = 9000*85
<em>Q = 765,000</em>
<em>Hence the amount of energy needed is 765,000Joules or 765kJ</em>
Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.