Answer:
<em>Answer: (A) 0.75 m/s^2</em>
Explanation:
The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.
That acceleration is proportional to the net force and inversely proportional to the mass of the object.
It can be expressed with the formula:

Where
Fn = Net force
m = mass
The ice skater pushes against a wall with a force of 59 N. The wall returns the force and the skater now has a net force of Fn=59 N that makes him accelerate. Being m=79 kg the mass of the skater, the acceleration is:


Answer: (A) 0.75 m/s^2
C. 23.5 degrees
This tilt in the axis causes the seasons.
Hope this helps.
Answer:
1375J
Explanation:
The gravitational potential/potential energy of the at the top of the tree which is the energy by virtue of its position.
P.E = mgh
mass = m
Acceleration due to gravity = g
height = h
At the top of the tree, the value of h (height) is high resulting in the gravitational potential. When the cat lands on the ground, the value of h is zero, the the gravitational potential would be zero and all the potential energy have been converted to other forms of energy.
Therefore, the total gravitational potential store is equal to the maximum amount of energy that can be transferred which is equal to 1375J.
Answer:
10.21 N
Explanation:
As the force is a vector, it can be decomposed in two components perpendicular each other, so there is no projection of one component in the direction of the other.
When divided in this way, the magnitude of the resultant vector can be found simply applying trigonometry, as follows:
F² = Fx² + Fy² ⇒ F = √(Fx)²+(Fy)²
Replacing by Fx= 5.17 N and Fy = 8.8 N, we get:
F = √(5.17)²+(8.8)² =10.21 N
Answer:
Chief Hopper
Explanation:
Mike travels at a constant speed of 3.1 m/s. To find how long it takes him to reach the school, we need to find the distance he travels. We can do this using Pythagorean theorem.
a² + b² = c²
(1000 m)² + (900 m)² = c²
c ≈ 1345 m
So the time is:
v = d / t
3.1 m/s = 1345 m / t
t ≈ 434 s
Next, Chief Hopper travels a total distance of 1900 m, starting at rest and accelerating at 0.028 m/s². So we can use constant acceleration equation to find the time.
d = v₀ t + ½ at²
1900 m = (0 m/s) t + ½ (0.028 m/s²) t²
t ≈ 368 s
So Chief Hopper reaches the school first, approximately 66 seconds before Mike does.