The reaction is 2 NO (g) <----> N2(g) + O2
partial pressures
Initial 37.30 0 0
Change -2p +p +p
Equilibrium 37.30-p p p
Kp = pN2 X pO2 / (pNO)^2
2400 = p^2 / (37.30-p)^2
3339096 - 179040p + 2400p^2 = p^2
2399p^2 + 3339096 -179040 p = 0
On solving
p = 36.55atm
Thus partial pressure of N2 and O2 = 36. 55 atm
Answer: the unshared pair of electrons on the nitrogen can accept a proton
Explanation:
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
Amines have a general molecular formula of
which has lone pair of electrons on nitrogen and thus is able to donate electrons to a lewis acid which is short of electrons. In other words nitrogen can accept a proton.

Answer:
C2H6
Explanation:
Let us first consider the molar Masses of each gas
HBr - 80.91 g/mol
NO2 - 46.0055 g/mol
C2H6 - 30.07 g/mol
We must remember that the greater the molar mass of a gas the lesser its velocity and average kinetic energy.
Looking at the gases listed, C2H6 have the highest average kinetic energy at this temperature since it has the lowest molecular mass. This reasoning is directly derived from Graham's law of diffusion in gases.
Hence C2H6 will effuse fastest when a hole is made in the container. It also possess the greatest average kinetic energy because it has the lowest molecular mass.
Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe
╰(^3^)╯
Answer:
0.51M
Explanation:
Given parameters:
Initial volume of NaBr = 340mL
Initial molarity = 1.5M
Final volume = 1000mL
Unknown:
Final molarity = ?
Solution;
This is a dilution problem whereas the concentration of a compound changes from one to another.
In this kind of problem, we must establish that the number of moles still remains the same.
number of moles initially before diluting = number of moles after dilution
Number of moles = Molarity x volume
Let us find the number of moles;
Number of moles = initial volume x initial molarity
Convert mL to dm³;
1000mL = 1dm³
340mL gives
= 0.34dm³
Number of moles = initial volume x initial molarity = 0.34 x 1.5 = 0.51moles
Now to find the new molarity/concentration;
Final molarity =
=
= 0.51M
We can see a massive drop in molarity this is due to dilution of the initial concentration.