10 cubic inches
We will use Boyle's law that states that for a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional.
P1 V1 = P2 V2
Where
P1 is initial pressure = 5 psi
V1 is initial volume = 20 cubic inch
P2 is final pressure = 10 psi
V2 is final volume = unknown
V2 = P1,V1 / P2
V2 = 20 × 5 / 10
V2 = 100/10
V2 = 10 cubic inches
Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.
Answer:
Mass of He required = 8.0 g
Explanation:
Given,
Initial moles of He = 2.0 mol
Initial pressure = 1.00 atm
final pressure = 2.00 atm
Ideal gas equation,
PV = nRT
As V, R and T are constant
So, 

Molar mass of He = 4.00 g/mol
No. of moles of He needs to be added = 4.0 - 2.0 = 2.0 mol
Mass = No. of mole × Molar mass
= 2.0 × 4.0
= 8.0 g
Missing question: <span>A 5.00 L sample of O2 at a given temperature and pressure contains a 1.08x10^23 molecules. How many molecules would be contained in each of the following at the same temperature and pressure? </span>
a) 5.00 L H2.
<span>b) 5.00 L CO2.
Use </span>Avogadro's Law: The Volume Amount Law: <span>equal </span>volumes<span> of all gases, at the same temperature and pressure, have the same </span>number<span> of molecules. Because hydrogen and carbon(IV) oxide are gases, number of molecules are the same as number of oxygen molecules, so:
a) N(H</span>₂) = 1.08·10²³.
b) N(CO₂) = 1.08·10²³
Answer : The initial temperature of system 2 is, 
Explanation :
In this problem we assumed that the total energy of the combined systems remains constant.
The mass remains same.
where,
= heat capacity of system 1 = 19.9 J/mole.K
= heat capacity of system 2 = 28.2 J/mole.K
= final temperature of system =
= initial temperature of system 1 =
= initial temperature of system 2 = ?
Now put all the given values in the above formula, we get
Therefore, the initial temperature of system 2 is, 